Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 10(5): 569-577, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30732524

RESUMO

Bacteroides fragilis is a member of the normal microbiota of the lower gastrointestinal tract, but some strains produce the putative tumourigenic B. fragilis toxin (BFT). In addition, B. fragilis can produce multiple capsular polysaccharides that comprise a microcapsule layer, including an immunomodulatory, zwitterionic, polysaccharide A (PSA) capable of stimulating anti-inflammatory interleukin-10 (IL-10) production. It is known that the PSA promoter can undergo inversion, thereby regulating the expression of PSA. A PCR digestion technique was used to investigate B. fragilis capsular PSA promoter orientation using human samples for the first time. It was found that approximately half of the B. fragilis population in a healthy patient population had PSA orientated in the 'ON' position. However, individuals with inflammatory bowel disease (IBD) had a significantly lower percentage of the B. fragilis population with PSA orientated 'ON' in comparison with the other patient cohorts studied. Similarly, the putative tumourigenic bft-positive B. fragilis populations were significantly associated with a lower proportion of the PSA promoter orientated 'ON'. These results suggest that the proportion of the B. fragilis population with the PSA promoter 'ON' may be an indicator of gastrointestinal health.


Assuntos
Infecções por Bacteroides/microbiologia , Bacteroides fragilis/genética , Doenças Inflamatórias Intestinais/microbiologia , Polissacarídeos Bacterianos/genética , Regiões Promotoras Genéticas/genética , Toxinas Bacterianas/metabolismo , Infecções por Bacteroides/metabolismo , Infecções por Bacteroides/patologia , Bacteroides fragilis/química , Estudos de Coortes , Colo/microbiologia , Colo/patologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Metaloendopeptidases/metabolismo , Polimorfismo de Nucleotídeo Único
2.
Vaccine ; 34(14): 1704-11, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26876441

RESUMO

BACKGROUND: Neisseria meningitidis are common colonizers of the human nasopharynx. In some circumstances, N. meningitidis becomes an opportunistic pathogen that invades tissues and causes meningitis. While a vaccine against a number of serogroups has been in effective use for many years, a vaccine against N. meningitidis group B has not yet been universally adopted. Bacterial heat shock protein complex (HSPC) vaccines comprise bacterial HSPs, purified with their chaperoned protein cargo. HSPC vaccines use the intrinsic adjuvant activity of their HSP, thought to act via Toll-like receptors (TLR), to induce an immune response against their cargo antigens. This study evaluated HSPC vaccines from N. meningitidis and the closely related commensal N. lactamica. RESULTS: The protein composition of N. lactamica and N. meningitidis HSPCs were similar. Using human HEK293 cells we found that both HSPCs can induce an innate immune response via activation of TLR2. However, stimulation of TLR2 or TLR4 deficient murine splenocytes revealed that HSPCs can activate an innate immune response via multiple receptors. Vaccination of wildtype mice with the Neisseria HSPC induced a strong antibody response and a Th1-restricted T helper response. However, vaccination of mice deficient in the major TLR adaptor protein, MyD88, revealed that while the Th1 response to Neisseria HSPC requires MyD88, these vaccines unexpectedly induced an antigen-specific antibody response via a MyD88-independent mechanism. CONCLUSIONS: N. lactamica and N. meningitidis HSPC vaccines both have potential utility for immunising against neisserial meningitis without the requirement for an exogenous adjuvant. The mode of action of these vaccines is highly complex, with HSPCs inducing immune responses via both MyD88-dependent and -independent mechanisms. In particular, these HSPC vaccines induced an antibody response without detectable T cell help.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Proteínas de Choque Térmico/imunologia , Imunidade Inata , Neisseria meningitidis , Animais , Proteínas de Bactérias/imunologia , Citocinas/imunologia , Células HEK293 , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Meningite Meningocócica/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Neisseria lactamica , Proteoma , Baço/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Immunology ; 139(4): 407-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551234

RESUMO

Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp-antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical.


Assuntos
Imunidade Adaptativa , Vacinas Bacterianas/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Proteínas de Choque Térmico/imunologia , Imunidade Inata , Vacinas Virais/imunologia , Animais , Vacinas Bacterianas/metabolismo , Vacinas Anticâncer/metabolismo , Células Dendríticas/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ativação Linfocitária , Receptores de Superfície Celular/metabolismo , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...